图 - 最小生成树(Prim & Kruskal)

arcstack约 915 字大约 3 分钟

图 - 最小生成树(Prim & Kruskal)

Kruskal算法是从最小权重边着手,将森林里的树逐渐合并;prim算法是从顶点出发,在根结点的基础上建起一棵树。@pdai

最小生成树相关名词

  • 连通图: 在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图。
  • 强连通图: 在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图。
  • 连通网: 在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
  • 生成树: 一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
  • 最小生成树: 在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。
alg-graph-min-tree-0.png
alg-graph-min-tree-0.png

最小生成树算法

Kruskal算法

此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。

  • 把图中的所有边按代价从小到大排序;
  • 把图中的n个顶点看成独立的n棵树组成的森林;
  • 按权值从小到大选择边,所选的边连接的两个顶点ui,viui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。
  • 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。
alg-graph-min-tree-1.png
alg-graph-min-tree-1.png

Prim算法

此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。

  • 图的所有顶点集合为VV;初始令集合u={s},v=V−uu={s},v=V−u;
  • 在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0)(u0,v0),加入到最小生成树中,并把v0v0并入到集合u中。
  • 重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。

由于不断向集合u中加点,所以最小代价边必须同步更新;需要建立一个辅助数组closedge,用来维护集合v中每个顶点与集合u中最小代价边信息,:

alg-graph-min-tree-2.png
alg-graph-min-tree-2.png

总结

因为Kruskal涉及大量对边的操作,所以它适用于稀疏图;普通的prim算法适用于稠密图,但堆优化的prim算法更适用于稀疏图,因为其时间复杂度是由边的数量决定的。

参考文章

  • https://blog.csdn.net/luoshixian099/article/details/51908175

  • https://www.cnblogs.com/wuxiangnong/p/10885129.html

上次编辑于:
贡献者: javatodo