排序 - 快速排序(Quick Sort)

arcstack约 1293 字大约 4 分钟

排序 - 快速排序(Quick Sort)

快速排序(Quick Sort)使用分治法算法思想。@pdai

快速排序介绍

它的基本思想是: 选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

快速排序实现

  • 从数列中挑出一个基准值。
  • 将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于数列的中间位置。
  • 递归地把"基准值前面的子数列"和"基准值后面的子数列"进行排序。

下面以数列a={30,40,60,10,20,50}为例,演示它的快速排序过程(如下图)。

alg-sort-fast-1.jpg
alg-sort-fast-1.jpg

上图只是给出了第1趟快速排序的流程。在第1趟中,设置x=a[i],即x=30。

  • 从"右 --> 左"查找小于x的数: 找到满足条件的数a[j]=20,此时j=4;然后将a[j]赋值a[i],此时i=0;接着从左往右遍历。
  • 从"左 --> 右"查找大于x的数: 找到满足条件的数a[i]=40,此时i=1;然后将a[i]赋值a[j],此时j=4;接着从右往左遍历。
  • 从"右 --> 左"查找小于x的数: 找到满足条件的数a[j]=10,此时j=3;然后将a[j]赋值a[i],此时i=1;接着从左往右遍历。
  • 从"左 --> 右"查找大于x的数: 找到满足条件的数a[i]=60,此时i=2;然后将a[i]赋值a[j],此时j=3;接着从右往左遍历。
  • 从"右 --> 左"查找小于x的数: 没有找到满足条件的数。当i>=j时,停止查找;然后将x赋值给a[i]。此趟遍历结束!

按照同样的方法,对子数列进行递归遍历。最后得到有序数组!

快速排序时间复杂度和稳定性

快速排序稳定性

快速排序是不稳定的算法,它不满足稳定算法的定义。

算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!

快速排序时间复杂度

快速排序的时间复杂度在最坏情况下是O(N2),平均的时间复杂度是O(N*lgN)。

这句话很好理解: 假设被排序的数列中有N个数。遍历一次的时间复杂度是O(N),需要遍历多少次呢? 至少lg(N+1)次,最多N次。

  • 为什么最少是lg(N+1)次? 快速排序是采用的分治法进行遍历的,我们将它看作一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。因此,快速排序的遍历次数最少是lg(N+1)次。
  • 为什么最多是N次? 这个应该非常简单,还是将快速排序看作一棵二叉树,它的深度最大是N。因此,快读排序的遍历次数最多是N次。

代码实现

    /** * 快速排序: Java * * @author skywang * @date 2014/03/11 */

    public class QuickSort {

        /* * 快速排序 * * 参数说明: * a -- 待排序的数组 * l -- 数组的左边界(例如,从起始位置开始排序,则l=0) * r -- 数组的右边界(例如,排序截至到数组末尾,则r=a.length-1) */
        public static void quickSort(int[] a, int l, int r) {

            if (l < r) {
                int i,j,x;

                i = l;
                j = r;
                x = a[i];
                while (i < j) {
                    while(i < j && a[j] > x)
                        j--; // 从右向左找第一个小于x的数
                    if(i < j)
                        a[i++] = a[j];
                    while(i < j && a[i] < x)
                        i++; // 从左向右找第一个大于x的数
                    if(i < j)
                        a[j--] = a[i];
                }
                a[i] = x;
                quickSort(a, l, i-1); /* 递归调用 */
                quickSort(a, i+1, r); /* 递归调用 */
            }
        }

        public static void main(String[] args) {
            int i;
            int a[] = {30,40,60,10,20,50};

            System.out.printf("before sort:");
            for (i=0; i<a.length; i++)
                System.out.printf("%d ", a[i]);
            System.out.printf("\n");

            quickSort(a, 0, a.length-1);

            System.out.printf("after sort:");
            for (i=0; i<a.length; i++)
                System.out.printf("%d ", a[i]);
            System.out.printf("\n");
        }
    }

参考文章

提示

本文主要参考至 https://www.cnblogs.com/skywang12345/p/3596746.html, 在此基础上做了内容的增改。

上次编辑于:
贡献者: javatodo