JUC锁: 锁核心类AQS详解

arcstack约 10928 字大约 36 分钟

JUC锁: 锁核心类AQS详解

AbstractQueuedSynchronizer抽象类是核心,需要重点掌握。它提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架。@pdai

带着BAT大厂的面试问题去理解

提示

请带着这些问题继续后文,会很大程度上帮助你更好的理解相关知识点。@pdai

  • 什么是AQS? 为什么它是核心?
  • AQS的核心思想是什么? 它是怎么实现的? 底层数据结构等
  • AQS有哪些核心的方法?
  • AQS定义什么样的资源获取方式? AQS定义了两种资源获取方式:独占(只有一个线程能访问执行,又根据是否按队列的顺序分为公平锁非公平锁,如ReentrantLock) 和共享(多个线程可同时访问执行,如SemaphoreCountDownLatchCyclicBarrier )。ReentrantReadWriteLock可以看成是组合式,允许多个线程同时对某一资源进行读。
  • AQS底层使用了什么样的设计模式? 模板
  • AQS的应用示例?

AbstractQueuedSynchronizer简介

AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Semaphore,其他的诸如ReentrantReadWriteLock,SynchronousQueue,FutureTask等等皆是基于AQS的。当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器。

AQS 核心思想

AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。

AQS使用一个int成员变量来表示同步状态,通过内置的FIFO队列来完成获取资源线程的排队工作。AQS使用CAS对该同步状态进行原子操作实现对其值的修改。

    private volatile int state;//共享变量,使用volatile修饰保证线程可见性

状态信息通过procted类型的getState,setState,compareAndSetState进行操作

    //返回同步状态的当前值
    protected final int getState() {  
            return state;
    }
     // 设置同步状态的值
    protected final void setState(int newState) { 
            state = newState;
    }
    //原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
    protected final boolean compareAndSetState(int expect, int update) {
            return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

AQS 对资源的共享方式

AQS定义两种资源共享方式

  • Exclusive(独占):只有一个线程能执行,如ReentrantLock。又可分为公平锁和非公平锁: * 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁

  • 非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的

  • Share(共享):多个线程可同时执行,如Semaphore/CountDownLatch。Semaphore、CountDownLatCh、 CyclicBarrier、ReadWriteLock 我们都会在后面讲到。

ReentrantReadWriteLock 可以看成是组合式,因为ReentrantReadWriteLock也就是读写锁允许多个线程同时对某一资源进行读。

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在上层已经帮我们实现好了。

AQS底层使用了模板方法模式

同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):

使用者继承AbstractQueuedSynchronizer并重写指定的方法。(这些重写方法很简单,无非是对于共享资源state的获取和释放) 将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。

这和我们以往通过实现接口的方式有很大区别,模板方法模式请参看:设计模式行为型 - 模板方法(Template Method)详解

AQS使用了模板方法模式,自定义同步器时需要重写下面几个AQS提供的模板方法:

    isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。
    tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。
    tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。
    tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
    tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。

默认情况下,每个方法都抛出 UnsupportedOperationException。 这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS类中的其他方法都是final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。

以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

AbstractQueuedSynchronizer数据结构

AbstractQueuedSynchronizer类底层的数据结构是使用CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。其中Sync queue,即同步队列,是双向链表,包括head结点和tail结点,head结点主要用作后续的调度。而Condition queue不是必须的,其是一个单向链表,只有当使用Condition时,才会存在此单向链表。并且可能会有多个Condition queue。

java-thread-x-juc-aqs-1.png
java-thread-x-juc-aqs-1.png

AbstractQueuedSynchronizer源码分析

类的继承关系

AbstractQueuedSynchronizer继承自AbstractOwnableSynchronizer抽象类,并且实现了Serializable接口,可以进行序列化。

    public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable

其中AbstractOwnableSynchronizer抽象类的源码如下:

    public abstract class AbstractOwnableSynchronizer implements java.io.Serializable {
        
        // 版本序列号
        private static final long serialVersionUID = 3737899427754241961L;
        // 构造方法
        protected AbstractOwnableSynchronizer() { }
        // 独占模式下的线程
        private transient Thread exclusiveOwnerThread;
        
        // 设置独占线程 
        protected final void setExclusiveOwnerThread(Thread thread) {
            exclusiveOwnerThread = thread;
        }
        
        // 获取独占线程 
        protected final Thread getExclusiveOwnerThread() {
            return exclusiveOwnerThread;
        }
    }

AbstractOwnableSynchronizer抽象类中,可以设置独占资源线程和获取独占资源线程。分别为setExclusiveOwnerThread与getExclusiveOwnerThread方法,这两个方法会被子类调用。

AbstractQueuedSynchronizer类有两个内部类,分别为Node类与ConditionObject类。下面分别做介绍。

类的内部类 - Node类

    static final class Node {
        // 模式,分为共享与独占
        // 共享模式
        static final Node SHARED = new Node();
        // 独占模式
        static final Node EXCLUSIVE = null;        
        // 结点状态
        // CANCELLED,值为1,表示当前的线程被取消
        // SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark
        // CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中
        // PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行
        // 值为0,表示当前节点在sync队列中,等待着获取锁
        static final int CANCELLED =  1;
        static final int SIGNAL    = -1;
        static final int CONDITION = -2;
        static final int PROPAGATE = -3;        

        // 结点状态
        volatile int waitStatus;        
        // 前驱结点
        volatile Node prev;    
        // 后继结点
        volatile Node next;        
        // 结点所对应的线程
        volatile Thread thread;        
        // 下一个等待者
        Node nextWaiter;
        
        // 结点是否在共享模式下等待
        final boolean isShared() {
            return nextWaiter == SHARED;
        }
        
        // 获取前驱结点,若前驱结点为空,抛出异常
        final Node predecessor() throws NullPointerException {
            // 保存前驱结点
            Node p = prev; 
            if (p == null) // 前驱结点为空,抛出异常
                throw new NullPointerException();
            else // 前驱结点不为空,返回
                return p;
        }
        
        // 无参构造方法
        Node() {    // Used to establish initial head or SHARED marker
        }
        
        // 构造方法
            Node(Thread thread, Node mode) {    // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }
        
        // 构造方法
        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

每个线程被阻塞的线程都会被封装成一个Node结点,放入队列。每个节点包含了一个Thread类型的引用,并且每个节点都存在一个状态,具体状态如下。

  • CANCELLED,值为1,表示当前的线程被取消。

  • SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,需要进行unpark操作。

  • CONDITION,值为-2,表示当前节点在等待condition,也就是在condition queue中。

  • PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行。

  • 值为0,表示当前节点在sync queue中,等待着获取锁。

类的内部类 - ConditionObject类

这个类有点长,耐心看下:

    // 内部类
    public class ConditionObject implements Condition, java.io.Serializable {
        // 版本号
        private static final long serialVersionUID = 1173984872572414699L;
        /** First node of condition queue. */
        // condition队列的头节点
        private transient Node firstWaiter;
        /** Last node of condition queue. */
        // condition队列的尾结点
        private transient Node lastWaiter;

        /** * Creates a new {@code ConditionObject} instance. */
        // 构造方法
        public ConditionObject() { }

        // Internal methods

        /** * Adds a new waiter to wait queue. * @return its new wait node */
        // 添加新的waiter到wait队列
        private Node addConditionWaiter() {
            // 保存尾结点
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) { // 尾结点不为空,并且尾结点的状态不为CONDITION
                // 清除状态为CONDITION的结点
                unlinkCancelledWaiters(); 
                // 将最后一个结点重新赋值给t
                t = lastWaiter;
            }
            // 新建一个结点
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null) // 尾结点为空
                // 设置condition队列的头节点
                firstWaiter = node;
            else // 尾结点不为空
                // 设置为节点的nextWaiter域为node结点
                t.nextWaiter = node;
            // 更新condition队列的尾结点
            lastWaiter = node;
            return node;
        }

        /** * Removes and transfers nodes until hit non-cancelled one or * null. Split out from signal in part to encourage compilers * to inline the case of no waiters. * @param first (non-null) the first node on condition queue */
        private void doSignal(Node first) {
            // 循环
            do {
                if ( (firstWaiter = first.nextWaiter) == null) // 该节点的nextWaiter为空
                    // 设置尾结点为空
                    lastWaiter = null;
                // 设置first结点的nextWaiter域
                first.nextWaiter = null;
            } while (!transferForSignal(first) &&
                        (first = firstWaiter) != null); // 将结点从condition队列转移到sync队列失败并且condition队列中的头节点不为空,一直循环
        }

        /** * Removes and transfers all nodes. * @param first (non-null) the first node on condition queue */
        private void doSignalAll(Node first) {
            // condition队列的头节点尾结点都设置为空
            lastWaiter = firstWaiter = null;
            // 循环
            do {
                // 获取first结点的nextWaiter域结点
                Node next = first.nextWaiter;
                // 设置first结点的nextWaiter域为空
                first.nextWaiter = null;
                // 将first结点从condition队列转移到sync队列
                transferForSignal(first);
                // 重新设置first
                first = next;
            } while (first != null);
        }

        /** * Unlinks cancelled waiter nodes from condition queue. * Called only while holding lock. This is called when * cancellation occurred during condition wait, and upon * insertion of a new waiter when lastWaiter is seen to have * been cancelled. This method is needed to avoid garbage * retention in the absence of signals. So even though it may * require a full traversal, it comes into play only when * timeouts or cancellations occur in the absence of * signals. It traverses all nodes rather than stopping at a * particular target to unlink all pointers to garbage nodes * without requiring many re-traversals during cancellation * storms. */
        // 从condition队列中清除状态为CANCEL的结点
        private void unlinkCancelledWaiters() {
            // 保存condition队列头节点
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) { // t不为空
                // 下一个结点
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) { // t结点的状态不为CONDTION状态
                    // 设置t节点的nextWaiter域为空
                    t.nextWaiter = null;
                    if (trail == null) // trail为空
                        // 重新设置condition队列的头节点
                        firstWaiter = next;
                    else // trail不为空
                        // 设置trail结点的nextWaiter域为next结点
                        trail.nextWaiter = next;
                    if (next == null) // next结点为空
                        // 设置condition队列的尾结点
                        lastWaiter = trail;
                }
                else // t结点的状态为CONDTION状态
                    // 设置trail结点
                    trail = t;
                // 设置t结点
                t = next;
            }
        }

        // public methods

        /** * Moves the longest-waiting thread, if one exists, from the * wait queue for this condition to the wait queue for the * owning lock. * * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */
        // 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。
        public final void signal() {
            if (!isHeldExclusively()) // 不被当前线程独占,抛出异常
                throw new IllegalMonitorStateException();
            // 保存condition队列头节点
            Node first = firstWaiter;
            if (first != null) // 头节点不为空
                // 唤醒一个等待线程
                doSignal(first);
        }

        /** * Moves all threads from the wait queue for this condition to * the wait queue for the owning lock. * * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */
        // 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。
        public final void signalAll() {
            if (!isHeldExclusively()) // 不被当前线程独占,抛出异常
                throw new IllegalMonitorStateException();
            // 保存condition队列头节点
            Node first = firstWaiter;
            if (first != null) // 头节点不为空
                // 唤醒所有等待线程
                doSignalAll(first);
        }

        /** * Implements uninterruptible condition wait. * <ol> * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * </ol> */
        // 等待,当前线程在接到信号之前一直处于等待状态,不响应中断
        public final void awaitUninterruptibly() {
            // 添加一个结点到等待队列
            Node node = addConditionWaiter();
            // 获取释放的状态
            int savedState = fullyRelease(node);
            boolean interrupted = false;
            while (!isOnSyncQueue(node)) { // 
                // 阻塞当前线程
                LockSupport.park(this);
                if (Thread.interrupted()) // 当前线程被中断
                    // 设置interrupted状态
                    interrupted = true; 
            }
            if (acquireQueued(node, savedState) || interrupted) // 
                selfInterrupt();
        }

        /* * For interruptible waits, we need to track whether to throw * InterruptedException, if interrupted while blocked on * condition, versus reinterrupt current thread, if * interrupted while blocked waiting to re-acquire. */

        /** Mode meaning to reinterrupt on exit from wait */
        private static final int REINTERRUPT =  1;
        /** Mode meaning to throw InterruptedException on exit from wait */
        private static final int THROW_IE    = -1;

        /** * Checks for interrupt, returning THROW_IE if interrupted * before signalled, REINTERRUPT if after signalled, or * 0 if not interrupted. */
        private int checkInterruptWhileWaiting(Node node) {
            return Thread.interrupted() ?
                (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
                0; 
        }

        /** * Throws InterruptedException, reinterrupts current thread, or * does nothing, depending on mode. */
        private void reportInterruptAfterWait(int interruptMode)
            throws InterruptedException {
            if (interruptMode == THROW_IE)
                throw new InterruptedException();
            else if (interruptMode == REINTERRUPT)
                selfInterrupt();
        }

        /** * Implements interruptible condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled or interrupted. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * </ol> */
        // // 等待,当前线程在接到信号或被中断之前一直处于等待状态
        public final void await() throws InterruptedException {
            if (Thread.interrupted()) // 当前线程被中断,抛出异常
                throw new InterruptedException();
            // 在wait队列上添加一个结点
            Node node = addConditionWaiter();
            // 
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                // 阻塞当前线程
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) // 检查结点等待时的中断类型
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

        /** * Implements timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * </ol> */
        // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态 
        public final long awaitNanos(long nanosTimeout)
                throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }

        /** * Implements absolute timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * <li> If timed out while blocked in step 4, return false, else true. * </ol> */
        // 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态
        public final boolean awaitUntil(Date deadline)
                throws InterruptedException {
            long abstime = deadline.getTime();
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (System.currentTimeMillis() > abstime) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkUntil(this, abstime);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        /** * Implements timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * <li> If timed out while blocked in step 4, return false, else true. * </ol> */
        // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0
        public final boolean await(long time, TimeUnit unit)
                throws InterruptedException {
            long nanosTimeout = unit.toNanos(time);
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        // support for instrumentation

        /** * Returns true if this condition was created by the given * synchronization object. * * @return {@code true} if owned */
        final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
            return sync == AbstractQueuedSynchronizer.this;
        }

        /** * Queries whether any threads are waiting on this condition. * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}. * * @return {@code true} if there are any waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */
        // 查询是否有正在等待此条件的任何线程
        protected final boolean hasWaiters() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    return true;
            }
            return false;
        }

        /** * Returns an estimate of the number of threads waiting on * this condition. * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}. * * @return the estimated number of waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */
        // 返回正在等待此条件的线程数估计值
        protected final int getWaitQueueLength() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int n = 0;
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    ++n;
            }
            return n;
        }

        /** * Returns a collection containing those threads that may be * waiting on this Condition. * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}. * * @return the collection of threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */
        // 返回包含那些可能正在等待此条件的线程集合
        protected final Collection<Thread> getWaitingThreads() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            ArrayList<Thread> list = new ArrayList<Thread>();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION) {
                    Thread t = w.thread;
                    if (t != null)
                        list.add(t);
                }
            }
            return list;
        }
    }

此类实现了Condition接口,Condition接口定义了条件操作规范,具体如下

    public interface Condition {

        // 等待,当前线程在接到信号或被中断之前一直处于等待状态
        void await() throws InterruptedException;
        
        // 等待,当前线程在接到信号之前一直处于等待状态,不响应中断
        void awaitUninterruptibly();
        
        //等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态 
        long awaitNanos(long nanosTimeout) throws InterruptedException;
        
        // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0
        boolean await(long time, TimeUnit unit) throws InterruptedException;
        
        // 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态
        boolean awaitUntil(Date deadline) throws InterruptedException;
        
        // 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。
        void signal();
        
        // 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。
        void signalAll();
    }

Condition接口中定义了await、signal方法,用来等待条件、释放条件。之后会详细分析CondtionObject的源码。

类的属性

属性中包含了头节点head,尾结点tail,状态state、自旋时间spinForTimeoutThreshold,还有AbstractQueuedSynchronizer抽象的属性在内存中的偏移地址,通过该偏移地址,可以获取和设置该属性的值,同时还包括一个静态初始化块,用于加载内存偏移地址。

    public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer
        implements java.io.Serializable {    
        // 版本号
        private static final long serialVersionUID = 7373984972572414691L;    
        // 头节点
        private transient volatile Node head;    
        // 尾结点
        private transient volatile Node tail;    
        // 状态
        private volatile int state;    
        // 自旋时间
        static final long spinForTimeoutThreshold = 1000L;
        
        // Unsafe类实例
        private static final Unsafe unsafe = Unsafe.getUnsafe();
        // state内存偏移地址
        private static final long stateOffset;
        // head内存偏移地址
        private static final long headOffset;
        // state内存偏移地址
        private static final long tailOffset;
        // tail内存偏移地址
        private static final long waitStatusOffset;
        // next内存偏移地址
        private static final long nextOffset;
        // 静态初始化块
        static {
            try {
                stateOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
                headOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
                tailOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
                waitStatusOffset = unsafe.objectFieldOffset
                    (Node.class.getDeclaredField("waitStatus"));
                nextOffset = unsafe.objectFieldOffset
                    (Node.class.getDeclaredField("next"));

            } catch (Exception ex) { throw new Error(ex); }
        }
    }

类的构造方法

此类构造方法为从抽象构造方法,供子类调用。

    protected AbstractQueuedSynchronizer() { }    

类的核心方法 - acquire方法

该方法以独占模式获取(资源),忽略中断,即线程在aquire过程中,中断此线程是无效的。源码如下:

    public final void acquire(int arg) {
        if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

由上述源码可以知道,当一个线程调用acquire时,调用方法流程如下

java-thread-x-juc-aqs-2.png
java-thread-x-juc-aqs-2.png
  • 首先调用tryAcquire方法,调用此方法的线程会试图在独占模式下获取对象状态。此方法应该查询是否允许它在独占模式下获取对象状态,如果允许,则获取它。在AbstractQueuedSynchronizer源码中默认会抛出一个异常,即需要子类去重写此方法完成自己的逻辑。之后会进行分析。

  • 若tryAcquire失败,则调用addWaiter方法,addWaiter方法完成的功能是将调用此方法的线程封装成为一个结点并放入Sync queue。

  • 调用acquireQueued方法,此方法完成的功能是Sync queue中的结点不断尝试获取资源,若成功,则返回true,否则,返回false。

  • 由于tryAcquire默认实现是抛出异常,所以此时,不进行分析,之后会结合一个例子进行分析。

首先分析addWaiter方法

    // 添加等待者
    private Node addWaiter(Node mode) {
        // 新生成一个结点,默认为独占模式
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        // 保存尾结点
        Node pred = tail;
        if (pred != null) { // 尾结点不为空,即已经被初始化
            // 将node结点的prev域连接到尾结点
            node.prev = pred; 
            if (compareAndSetTail(pred, node)) { // 比较pred是否为尾结点,是则将尾结点设置为node 
                // 设置尾结点的next域为node
                pred.next = node;
                return node; // 返回新生成的结点
            }
        }
        enq(node); // 尾结点为空(即还没有被初始化过),或者是compareAndSetTail操作失败,则入队列
        return node;
    }

addWaiter方法使用快速添加的方式往sync queue尾部添加结点,如果sync queue队列还没有初始化,则会使用enq插入队列中,enq方法源码如下

    private Node enq(final Node node) {
        for (;;) { // 无限循环,确保结点能够成功入队列
            // 保存尾结点
            Node t = tail;
            if (t == null) { // 尾结点为空,即还没被初始化
                if (compareAndSetHead(new Node())) // 头节点为空,并设置头节点为新生成的结点
                    tail = head; // 头节点与尾结点都指向同一个新生结点
            } else { // 尾结点不为空,即已经被初始化过
                // 将node结点的prev域连接到尾结点
                node.prev = t; 
                if (compareAndSetTail(t, node)) { // 比较结点t是否为尾结点,若是则将尾结点设置为node
                    // 设置尾结点的next域为node
                    t.next = node; 
                    return t; // 返回尾结点
                }
            }
        }
    }

enq方法会使用无限循环来确保节点的成功插入。

现在,分析acquireQueue方法。其源码如下

    // sync队列中的结点在独占且忽略中断的模式下获取(资源)
    final boolean acquireQueued(final Node node, int arg) {
        // 标志
        boolean failed = true;
        try {
            // 中断标志
            boolean interrupted = false;
            for (;;) { // 无限循环
                // 获取node节点的前驱结点
                final Node p = node.predecessor(); 
                if (p == head && tryAcquire(arg)) { // 前驱为头节点并且成功获得锁
                    setHead(node); // 设置头节点
                    p.next = null; // help GC
                    failed = false; // 设置标志
                    return interrupted; 
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

首先获取当前节点的前驱节点,如果前驱节点是头节点并且能够获取(资源),代表该当前节点能够占有锁,设置头节点为当前节点,返回。否则,调用shouldParkAfterFailedAcquire和parkAndCheckInterrupt方法,首先,我们看shouldParkAfterFailedAcquire方法,代码如下

    // 当获取(资源)失败后,检查并且更新结点状态
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 获取前驱结点的状态
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL) // 状态为SIGNAL,为-1
            /* * This node has already set status asking a release * to signal it, so it can safely park. */
            // 可以进行park操作
            return true; 
        if (ws > 0) { // 表示状态为CANCELLED,为1
            /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0); // 找到pred结点前面最近的一个状态不为CANCELLED的结点
            // 赋值pred结点的next域
            pred.next = node; 
        } else { // 为PROPAGATE -3 或者是0 表示无状态,(为CONDITION -2时,表示此节点在condition queue中) 
            /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */
            // 比较并设置前驱结点的状态为SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL); 
        }
        // 不能进行park操作
        return false;
    }

只有当该节点的前驱结点的状态为SIGNAL时,才可以对该结点所封装的线程进行park操作。否则,将不能进行park操作。再看parkAndCheckInterrupt方法,源码如下

    // 进行park操作并且返回该线程是否被中断
    private final boolean parkAndCheckInterrupt() {
        // 在许可可用之前禁用当前线程,并且设置了blocker
        LockSupport.park(this);
        return Thread.interrupted(); // 当前线程是否已被中断,并清除中断标记位
    }

parkAndCheckInterrupt方法里的逻辑是首先执行park操作,即禁用当前线程,然后返回该线程是否已经被中断。再看final块中的cancelAcquire方法,其源码如下

    // 取消继续获取(资源)
    private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        // node为空,返回
        if (node == null)
            return;
        // 设置node结点的thread为空
        node.thread = null;

        // Skip cancelled predecessors
        // 保存node的前驱结点
        Node pred = node.prev;
        while (pred.waitStatus > 0) // 找到node前驱结点中第一个状态小于0的结点,即不为CANCELLED状态的结点
            node.prev = pred = pred.prev;

        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        // 获取pred结点的下一个结点
        Node predNext = pred.next;

        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        // 设置node结点的状态为CANCELLED
        node.waitStatus = Node.CANCELLED;

        // If we are the tail, remove ourselves.
        if (node == tail && compareAndSetTail(node, pred)) { // node结点为尾结点,则设置尾结点为pred结点
            // 比较并设置pred结点的next节点为null
            compareAndSetNext(pred, predNext, null); 
        } else { // node结点不为尾结点,或者比较设置不成功
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                    (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) { // (pred结点不为头节点,并且pred结点的状态为SIGNAL)或者 
                                    // pred结点状态小于等于0,并且比较并设置等待状态为SIGNAL成功,并且pred结点所封装的线程不为空
                // 保存结点的后继
                Node next = node.next;
                if (next != null && next.waitStatus <= 0) // 后继不为空并且后继的状态小于等于0
                    compareAndSetNext(pred, predNext, next); // 比较并设置pred.next = next;
            } else {
                unparkSuccessor(node); // 释放node的前一个结点
            }

            node.next = node; // help GC
        }
    }

该方法完成的功能就是取消当前线程对资源的获取,即设置该结点的状态为CANCELLED,接着我们再看unparkSuccessor方法,源码如下

    // 释放后继结点
    private void unparkSuccessor(Node node) {
        /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */
        // 获取node结点的等待状态
        int ws = node.waitStatus;
        if (ws < 0) // 状态值小于0,为SIGNAL -1 或 CONDITION -2 或 PROPAGATE -3
            // 比较并且设置结点等待状态,设置为0
            compareAndSetWaitStatus(node, ws, 0);

        /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */
        // 获取node节点的下一个结点
        Node s = node.next;
        if (s == null || s.waitStatus > 0) { // 下一个结点为空或者下一个节点的等待状态大于0,即为CANCELLED
            // s赋值为空
            s = null; 
            // 从尾结点开始从后往前开始遍历
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0) // 找到等待状态小于等于0的结点,找到最前的状态小于等于0的结点
                    // 保存结点
                    s = t;
        }
        if (s != null) // 该结点不为为空,释放许可
            LockSupport.unpark(s.thread);
    }

该方法的作用就是为了释放node节点的后继结点。

对于cancelAcquire与unparkSuccessor方法,如下示意图可以清晰的表示:

java-thread-x-juc-aqs-3.png
java-thread-x-juc-aqs-3.png

其中node为参数,在执行完cancelAcquire方法后的效果就是unpark了s结点所包含的t4线程。

现在,再来看acquireQueued方法的整个的逻辑。逻辑如下:

  • 判断结点的前驱是否为head并且是否成功获取(资源)。
  • 若步骤1均满足,则设置结点为head,之后会判断是否finally模块,然后返回。
  • 若步骤2不满足,则判断是否需要park当前线程,是否需要park当前线程的逻辑是判断结点的前驱结点的状态是否为SIGNAL,若是,则park当前结点,否则,不进行park操作。
  • 若park了当前线程,之后某个线程对本线程unpark后,并且本线程也获得机会运行。那么,将会继续进行步骤①的判断。

类的核心方法 - release方法

以独占模式释放对象,其源码如下:

    public final boolean release(int arg) {
        if (tryRelease(arg)) { // 释放成功
            // 保存头节点
            Node h = head; 
            if (h != null && h.waitStatus != 0) // 头节点不为空并且头节点状态不为0
                unparkSuccessor(h); //释放头节点的后继结点
            return true;
        }
        return false;
    }

其中,tryRelease的默认实现是抛出异常,需要具体的子类实现,如果tryRelease成功,那么如果头节点不为空并且头节点的状态不为0,则释放头节点的后继结点,unparkSuccessor方法已经分析过,不再累赘。

对于其他方法我们也可以分析,与前面分析的方法大同小异,所以,不再累赘。

AbstractQueuedSynchronizer示例详解一

借助下面示例来分析AbstractQueuedSyncrhonizer内部的工作机制。示例源码如下

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;

    class MyThread extends Thread {
        private Lock lock;
        public MyThread(String name, Lock lock) {
            super(name);
            this.lock = lock;
        }
        
        public void run () {
            lock.lock();
            try {
                System.out.println(Thread.currentThread() + " running");
            } finally {
                lock.unlock();
            }
        }
    }
    public class AbstractQueuedSynchronizerDemo {
        public static void main(String[] args) {
            Lock lock = new ReentrantLock();
            
            MyThread t1 = new MyThread("t1", lock);
            MyThread t2 = new MyThread("t2", lock);
            t1.start();
            t2.start();    
        }
    }

运行结果(可能的一种):

    Thread[t1,5,main] running
    Thread[t2,5,main] running

结果分析: 从示例可知,线程t1与t2共用了一把锁,即同一个lock。可能会存在如下一种时序。

java-thread-x-juc-aqs-4.png
java-thread-x-juc-aqs-4.png

说明: 首先线程t1先执行lock.lock操作,然后t2执行lock.lock操作,然后t1执行lock.unlock操作,最后t2执行lock.unlock操作。基于这样的时序,分析AbstractQueuedSynchronizer内部的工作机制。

  • t1线程调用lock.lock方法,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-5.png
java-thread-x-juc-aqs-5.png

说明: 其中,前面的部分表示哪个类,后面是具体的类中的哪个方法,AQS表示AbstractQueuedSynchronizer类,AOS表示AbstractOwnableSynchronizer类。

  • t2线程调用lock.lock方法,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-6.png
java-thread-x-juc-aqs-6.png

说明: 经过一系列的方法调用,最后达到的状态是禁用t2线程,因为调用了LockSupport.park。

  • t1线程调用lock.unlock,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-7.png
java-thread-x-juc-aqs-7.png

说明: t1线程中调用lock.unlock后,经过一系列的调用,最终的状态是释放了许可,因为调用了LockSupport.unpark。这时,t2线程就可以继续运行了。此时,会继续恢复t2线程运行环境,继续执行LockSupport.park后面的语句,即进一步调用如下。

java-thread-x-juc-aqs-8.png
java-thread-x-juc-aqs-8.png

说明: 在上一步调用了LockSupport.unpark后,t2线程恢复运行,则运行parkAndCheckInterrupt,之后,继续运行acquireQueued方法,最后达到的状态是头节点head与尾结点tail均指向了t2线程所在的结点,并且之前的头节点已经从sync队列中断开了。

  • t2线程调用lock.unlock,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-9.png
java-thread-x-juc-aqs-9.png

说明: t2线程执行lock.unlock后,最终达到的状态还是与之前的状态一样。

AbstractQueuedSynchronizer示例详解二

下面我们结合Condition实现生产者与消费者,来进一步分析AbstractQueuedSynchronizer的内部工作机制。

  • Depot(仓库)类
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;

    public class Depot {
        private int size;
        private int capacity;
        private Lock lock;
        private Condition fullCondition;
        private Condition emptyCondition;
        
        public Depot(int capacity) {
            this.capacity = capacity;    
            lock = new ReentrantLock();
            fullCondition = lock.newCondition();
            emptyCondition = lock.newCondition();
        }
        
        public void produce(int no) {
            lock.lock();
            int left = no;
            try {
                while (left > 0) {
                    while (size >= capacity)  {
                        System.out.println(Thread.currentThread() + " before await");
                        fullCondition.await();
                        System.out.println(Thread.currentThread() + " after await");
                    }
                    int inc = (left + size) > capacity ? (capacity - size) : left;
                    left -= inc;
                    size += inc;
                    System.out.println("produce = " + inc + ", size = " + size);
                    emptyCondition.signal();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        }
        
        public void consume(int no) {
            lock.lock();
            int left = no;
            try {            
                while (left > 0) {
                    while (size <= 0) {
                        System.out.println(Thread.currentThread() + " before await");
                        emptyCondition.await();
                        System.out.println(Thread.currentThread() + " after await");
                    }
                    int dec = (size - left) > 0 ? left : size;
                    left -= dec;
                    size -= dec;
                    System.out.println("consume = " + dec + ", size = " + size);
                    fullCondition.signal();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        }
    }

  • 测试类
    class Consumer {
        private Depot depot;
        public Consumer(Depot depot) {
            this.depot = depot;
        }
        
        public void consume(int no) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    depot.consume(no);
                }
            }, no + " consume thread").start();
        }
    }

    class Producer {
        private Depot depot;
        public Producer(Depot depot) {
            this.depot = depot;
        }
        
        public void produce(int no) {
            new Thread(new Runnable() {
                
                @Override
                public void run() {
                    depot.produce(no);
                }
            }, no + " produce thread").start();
        }
    }

    public class ReentrantLockDemo {
        public static void main(String[] args) throws InterruptedException {
            Depot depot = new Depot(500);
            new Producer(depot).produce(500);
            new Producer(depot).produce(200);
            new Consumer(depot).consume(500);
            new Consumer(depot).consume(200);
        }
    }

  • 运行结果(可能的一种):
    produce = 500, size = 500
    Thread[200 produce thread,5,main] before await
    consume = 500, size = 0
    Thread[200 consume thread,5,main] before await
    Thread[200 produce thread,5,main] after await
    produce = 200, size = 200
    Thread[200 consume thread,5,main] after await
    consume = 200, size = 0

说明: 根据结果,我们猜测一种可能的时序如下

java-thread-x-juc-aqs-10.png
java-thread-x-juc-aqs-10.png

说明: p1代表produce 500的那个线程,p2代表produce 200的那个线程,c1代表consume 500的那个线程,c2代表consume 200的那个线程。

  • p1线程调用lock.lock,获得锁,继续运行,方法调用顺序在前面已经给出。
  • p2线程调用lock.lock,由前面的分析可得到如下的最终状态。
java-thread-x-juc-aqs-11.png
java-thread-x-juc-aqs-11.png

说明: p2线程调用lock.lock后,会禁止p2线程的继续运行,因为执行了LockSupport.park操作。

  • c1线程调用lock.lock,由前面的分析得到如下的最终状态。
java-thread-x-juc-aqs-12.png
java-thread-x-juc-aqs-12.png

说明: 最终c1线程会在sync queue队列的尾部,并且其结点的前驱结点(包含p2的结点)的waitStatus变为了SIGNAL。

  • c2线程调用lock.lock,由前面的分析得到如下的最终状态。
java-thread-x-juc-aqs-13.png
java-thread-x-juc-aqs-13.png

说明: 最终c1线程会在sync queue队列的尾部,并且其结点的前驱结点(包含c1的结点)的waitStatus变为了SIGNAL。

  • p1线程执行emptyCondition.signal,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-14.png
java-thread-x-juc-aqs-14.png

说明: AQS.CO表示AbstractQueuedSynchronizer.ConditionObject类。此时调用signal方法不会产生任何其他效果。

  • p1线程执行lock.unlock,根据前面的分析可知,最终的状态如下。
java-thread-x-juc-aqs-15.png
java-thread-x-juc-aqs-15.png

说明: 此时,p2线程所在的结点为头节点,并且其他两个线程(c1、c2)依旧被禁止,所以,此时p2线程继续运行,执行用户逻辑。

  • p2线程执行fullCondition.await,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-17-1.png
java-thread-x-juc-aqs-17-1.png

说明: 最终到达的状态是新生成了一个结点,包含了p2线程,此结点在condition queue中;并且sync queue中p2线程被禁止了,因为在执行了LockSupport.park操作。从方法一些调用可知,在await操作中线程会释放锁资源,供其他线程获取。同时,head结点后继结点的包含的线程的许可被释放了,故其可以继续运行。由于此时,只有c1线程可以运行,故运行c1。

  • 继续运行c1线程,c1线程由于之前被park了,所以此时恢复,继续之前的步骤,即还是执行前面提到的acquireQueued方法,之后,c1判断自己的前驱结点为head,并且可以获取锁资源,最终到达的状态如下。
java-thread-x-juc-aqs-16.png
java-thread-x-juc-aqs-16.png

说明: 其中,head设置为包含c1线程的结点,c1继续运行。

  • c1线程执行fullCondtion.signal,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-17.png
java-thread-x-juc-aqs-17.png

说明: signal方法达到的最终结果是将包含p2线程的结点从condition queue中转移到sync queue中,之后condition queue为null,之前的尾结点的状态变为SIGNAL。

  • c1线程执行lock.unlock操作,根据之前的分析,经历的状态变化如下。
java-thread-x-juc-aqs-18.png
java-thread-x-juc-aqs-18.png

说明: 最终c2线程会获取锁资源,继续运行用户逻辑。

  • c2线程执行emptyCondition.await,由前面的第七步分析,可知最终的状态如下。
java-thread-x-juc-aqs-19.png
java-thread-x-juc-aqs-19.png

说明: await操作将会生成一个结点放入condition queue中与之前的一个condition queue是不相同的,并且unpark头节点后面的结点,即包含线程p2的结点。

  • p2线程被unpark,故可以继续运行,经过CPU调度后,p2继续运行,之后p2线程在AQS:await方法中被park,继续AQS.CO:await方法的运行,其方法调用顺序如下,只给出了主要的方法调用。
java-thread-x-juc-aqs-20.png
java-thread-x-juc-aqs-20.png
  • p2继续运行,执行emptyCondition.signal,根据第九步分析可知,最终到达的状态如下。
java-thread-x-juc-aqs-21.png
java-thread-x-juc-aqs-21.png

说明: 最终,将condition queue中的结点转移到sync queue中,并添加至尾部,condition queue会为空,并且将head的状态设置为SIGNAL。

  • p2线程执行lock.unlock操作,根据前面的分析可知,最后的到达的状态如下。
java-thread-x-juc-aqs-22.png
java-thread-x-juc-aqs-22.png

说明: unlock操作会释放c2线程的许可,并且将头节点设置为c2线程所在的结点。

  • c2线程继续运行,执行fullCondition. signal,由于此时fullCondition的condition queue已经不存在任何结点了,故其不会产生作用。

  • c2执行lock.unlock,由于c2是sync队列中最后一个结点,故其不会再调用unparkSuccessor了,直接返回true。即整个流程就完成了。

AbstractQueuedSynchronizer总结

对于AbstractQueuedSynchronizer的分析,最核心的就是sync queue的分析。

  • 每一个结点都是由前一个结点唤醒
  • 当结点发现前驱结点是head并且尝试获取成功,则会轮到该线程运行。
  • condition queue中的结点向sync queue中转移是通过signal操作完成的。
  • 当结点的状态为SIGNAL时,表示后面的结点需要运行。

参考文章

  • 文章主要参考自leesf的https://www.cnblogs.com/leesf456/p/5350186.html,在此基础上做了增改。
  • http://ifeve.com/introduce-abstractqueuedsynchronizer/
  • http://blog.csdn.net/chen77716/article/details/6641477
  • https://blog.csdn.net/mulinsen77/article/details/84583716
上次编辑于:
贡献者: javatodo