Java 并发 - 线程基础

arcstack约 3889 字大约 13 分钟

Java 并发 - 线程基础

本文主要概要性的介绍线程的基础,为后面的章节深入介绍Java并发的知识提供基础。@pdai

带着BAT大厂的面试问题去理解

提示

请带着这些问题继续后文,会很大程度上帮助你更好的理解线程基础。@pdai

  • 线程有哪几种状态? 分别说明从一种状态到另一种状态转变有哪些方式?
  • 通常线程有哪几种使用方式?
  • 基础线程机制有哪些?
  • 线程的中断方式有哪些?
  • 线程的互斥同步方式有哪些? 如何比较和选择?
  • 线程之间有哪些协作方式?

线程状态转换

ace830df-9919-48ca-91b5-60b193f593d2.png
ace830df-9919-48ca-91b5-60b193f593d2.png

新建(New)

创建后尚未启动。

可运行(Runnable)

可能正在运行,也可能正在等待 CPU 时间片。

包含了操作系统线程状态中的 Running 和 Ready。

阻塞(Blocking)

等待获取一个排它锁,如果其线程释放了锁就会结束此状态。

无限期等待(Waiting)

等待其它线程显式地唤醒,否则不会被分配 CPU 时间片。

进入方法退出方法没有设置 Timeout 参数的 Object.wait() 方法Object.notify() / Object.notifyAll()没有设置 Timeout 参数的 Thread.join() 方法被调用的线程执行完毕LockSupport.park() 方法-

限期等待(Timed Waiting)

无需等待其它线程显式地唤醒,在一定时间之后会被系统自动唤醒。

调用 Thread.sleep() 方法使线程进入限期等待状态时,常常用“使一个线程睡眠”进行描述。

调用 Object.wait() 方法使线程进入限期等待或者无限期等待时,常常用“挂起一个线程”进行描述。

睡眠和挂起是用来描述行为,而阻塞和等待用来描述状态。

阻塞和等待的区别在于,阻塞是被动的,它是在等待获取一个排它锁。而等待是主动的,通过调用 Thread.sleep() 和 Object.wait() 等方法进入。

进入方法退出方法Thread.sleep() 方法时间结束设置了 Timeout 参数的 Object.wait() 方法时间结束 / Object.notify() / Object.notifyAll()设置了 Timeout 参数的 Thread.join() 方法时间结束 / 被调用的线程执行完毕LockSupport.parkNanos() 方法-LockSupport.parkUntil() 方法-

死亡(Terminated)

可以是线程结束任务之后自己结束,或者产生了异常而结束。

线程使用方式

有三种使用线程的方法:

  • 实现 Runnable 接口;
  • 实现 Callable 接口;
  • 继承 Thread 类。

实现 Runnable 和 Callable 接口的类只能当做一个可以在线程中运行的任务,不是真正意义上的线程,因此最后还需要通过 Thread 来调用。可以说任务是通过线程驱动从而执行的。

实现 Runnable 接口

需要实现 run() 方法。

通过 Thread 调用 start() 方法来启动线程。

    public class MyRunnable implements Runnable {
        public void run() {
            // ...
        }
    }

    public static void main(String[] args) {
        MyRunnable instance = new MyRunnable();
        Thread thread = new Thread(instance);
        thread.start();
    }

实现 Callable 接口

与 Runnable 相比,Callable 可以有返回值,返回值通过 FutureTask 进行封装。

    public class MyCallable implements Callable<Integer> {
        public Integer call() {
            return 123;
        }
    }

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        MyCallable mc = new MyCallable();
        FutureTask<Integer> ft = new FutureTask<>(mc);
        Thread thread = new Thread(ft);
        thread.start();
        System.out.println(ft.get());
    }

继承 Thread 类

同样也是需要实现 run() 方法,因为 Thread 类也实现了 Runable 接口。

当调用 start() 方法启动一个线程时,虚拟机会将该线程放入就绪队列中等待被调度,当一个线程被调度时会执行该线程的 run() 方法。

    public class MyThread extends Thread {
        public void run() {
            // ...
        }
    }

    public static void main(String[] args) {
        MyThread mt = new MyThread();
        mt.start();
    }

实现接口 VS 继承 Thread

实现接口会更好一些,因为:

  • Java 不支持多重继承,因此继承了 Thread 类就无法继承其它类,但是可以实现多个接口;
  • 类可能只要求可执行就行,继承整个 Thread 类开销过大。

基础线程机制

Executor

Executor 管理多个异步任务的执行,而无需程序员显式地管理线程的生命周期。这里的异步是指多个任务的执行互不干扰,不需要进行同步操作。

主要有三种 Executor:

  • CachedThreadPool: 一个任务创建一个线程;
  • FixedThreadPool: 所有任务只能使用固定大小的线程;
  • SingleThreadExecutor: 相当于大小为 1 的 FixedThreadPool。
    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < 5; i++) {
            executorService.execute(new MyRunnable());
        }
        executorService.shutdown();
    }

Daemon

守护线程是程序运行时在后台提供服务的线程,不属于程序中不可或缺的部分。

当所有非守护线程结束时,程序也就终止,同时会杀死所有守护线程。

main() 属于非守护线程。

使用 setDaemon() 方法将一个线程设置为守护线程。

    public static void main(String[] args) {
        Thread thread = new Thread(new MyRunnable());
        thread.setDaemon(true);
    }

sleep()

Thread.sleep(millisec) 方法会休眠当前正在执行的线程,millisec 单位为毫秒。

sleep() 可能会抛出 InterruptedException,因为异常不能跨线程传播回 main() 中,因此必须在本地进行处理。线程中抛出的其它异常也同样需要在本地进行处理。

    public void run() {
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

yield()

对静态方法 Thread.yield() 的调用声明了当前线程已经完成了生命周期中最重要的部分,可以切换给其它线程来执行。该方法只是对线程调度器的一个建议,而且也只是建议具有相同优先级的其它线程可以运行。

    public void run() {
        Thread.yield();
    }

线程中断

一个线程执行完毕之后会自动结束,如果在运行过程中发生异常也会提前结束。

InterruptedException

通过调用一个线程的 interrupt() 来中断该线程,如果该线程处于阻塞、限期等待或者无限期等待状态,那么就会抛出 InterruptedException,从而提前结束该线程。但是不能中断 I/O 阻塞和 synchronized 锁阻塞。

对于以下代码,在 main() 中启动一个线程之后再中断它,由于线程中调用了 Thread.sleep() 方法,因此会抛出一个 InterruptedException,从而提前结束线程,不执行之后的语句。

    public class InterruptExample {

        private static class MyThread1 extends Thread {
            @Override
            public void run() {
                try {
                    Thread.sleep(2000);
                    System.out.println("Thread run");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        Thread thread1 = new MyThread1();
        thread1.start();
        thread1.interrupt();
        System.out.println("Main run");
    }

    Main run
    java.lang.InterruptedException: sleep interrupted
        at java.lang.Thread.sleep(Native Method)
        at InterruptExample.lambda$main$0(InterruptExample.java:5)
        at InterruptExample$$Lambda$1/713338599.run(Unknown Source)
        at java.lang.Thread.run(Thread.java:745)

interrupted()

如果一个线程的 run() 方法执行一个无限循环,并且没有执行 sleep() 等会抛出 InterruptedException 的操作,那么调用线程的 interrupt() 方法就无法使线程提前结束。

但是调用 interrupt() 方法会设置线程的中断标记,此时调用 interrupted() 方法会返回 true。因此可以在循环体中使用 interrupted() 方法来判断线程是否处于中断状态,从而提前结束线程。

    public class InterruptExample {

        private static class MyThread2 extends Thread {
            @Override
            public void run() {
                while (!interrupted()) {
                    // ..
                }
                System.out.println("Thread end");
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        Thread thread2 = new MyThread2();
        thread2.start();
        thread2.interrupt();
    }

    Thread end

Executor 的中断操作

调用 Executor 的 shutdown() 方法会等待线程都执行完毕之后再关闭,但是如果调用的是 shutdownNow() 方法,则相当于调用每个线程的 interrupt() 方法。

以下使用 Lambda 创建线程,相当于创建了一个匿名内部线程。

    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        executorService.execute(() -> {
            try {
                Thread.sleep(2000);
                System.out.println("Thread run");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        executorService.shutdownNow();
        System.out.println("Main run");
    }

    Main run
    java.lang.InterruptedException: sleep interrupted
        at java.lang.Thread.sleep(Native Method)
        at ExecutorInterruptExample.lambda$main$0(ExecutorInterruptExample.java:9)
        at ExecutorInterruptExample$$Lambda$1/1160460865.run(Unknown Source)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

如果只想中断 Executor 中的一个线程,可以通过使用 submit() 方法来提交一个线程,它会返回一个 Future<?> 对象,通过调用该对象的 cancel(true) 方法就可以中断线程。

    Future<?> future = executorService.submit(() -> {
        // ..
    });
    future.cancel(true);

线程互斥同步

Java 提供了两种锁机制来控制多个线程对共享资源的互斥访问,第一个是 JVM 实现的 synchronized,而另一个是 JDK 实现的 ReentrantLock。

synchronized

1. 同步一个代码块

    public void func() {
        synchronized (this) {
            // ...
        }
    }

它只作用于同一个对象,如果调用两个对象上的同步代码块,就不会进行同步。

对于以下代码,使用 ExecutorService 执行了两个线程,由于调用的是同一个对象的同步代码块,因此这两个线程会进行同步,当一个线程进入同步语句块时,另一个线程就必须等待。

    public class SynchronizedExample {

        public void func1() {
            synchronized (this) {
                for (int i = 0; i < 10; i++) {
                    System.out.print(i + " ");
                }
            }
        }
    }

    public static void main(String[] args) {
        SynchronizedExample e1 = new SynchronizedExample();
        ExecutorService executorService = Executors.newCachedThreadPool();
        executorService.execute(() -> e1.func1());
        executorService.execute(() -> e1.func1());
    }

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

对于以下代码,两个线程调用了不同对象的同步代码块,因此这两个线程就不需要同步。从输出结果可以看出,两个线程交叉执行。

    public static void main(String[] args) {
        SynchronizedExample e1 = new SynchronizedExample();
        SynchronizedExample e2 = new SynchronizedExample();
        ExecutorService executorService = Executors.newCachedThreadPool();
        executorService.execute(() -> e1.func1());
        executorService.execute(() -> e2.func1());
    }

    0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

2. 同步一个方法

    public synchronized void func () {
        // ...
    }

它和同步代码块一样,作用于同一个对象。

3. 同步一个类

    public void func() {
        synchronized (SynchronizedExample.class) {
            // ...
        }
    }

作用于整个类,也就是说两个线程调用同一个类的不同对象上的这种同步语句,也会进行同步。

    public class SynchronizedExample {

        public void func2() {
            synchronized (SynchronizedExample.class) {
                for (int i = 0; i < 10; i++) {
                    System.out.print(i + " ");
                }
            }
        }
    }

    public static void main(String[] args) {
        SynchronizedExample e1 = new SynchronizedExample();
        SynchronizedExample e2 = new SynchronizedExample();
        ExecutorService executorService = Executors.newCachedThreadPool();
        executorService.execute(() -> e1.func2());
        executorService.execute(() -> e2.func2());
    }

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

4. 同步一个静态方法

    public synchronized static void fun() {
        // ...
    }

作用于整个类。

ReentrantLock

ReentrantLock 是 java.util.concurrent(J.U.C)包中的锁。

    public class LockExample {

        private Lock lock = new ReentrantLock();

        public void func() {
            lock.lock();
            try {
                for (int i = 0; i < 10; i++) {
                    System.out.print(i + " ");
                }
            } finally {
                lock.unlock(); // 确保释放锁,从而避免发生死锁。
            }
        }
    }

    public static void main(String[] args) {
        LockExample lockExample = new LockExample();
        ExecutorService executorService = Executors.newCachedThreadPool();
        executorService.execute(() -> lockExample.func());
        executorService.execute(() -> lockExample.func());
    }

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

比较

1. 锁的实现

synchronized 是 JVM 实现的,而 ReentrantLock 是 JDK 实现的。

2. 性能

新版本 Java 对 synchronized 进行了很多优化,例如自旋锁等,synchronized 与 ReentrantLock 大致相同。

3. 等待可中断

当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。

ReentrantLock 可中断,而 synchronized 不行。

4. 公平锁

公平锁是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁。

synchronized 中的锁是非公平的,ReentrantLock 默认情况下也是非公平的,但是也可以是公平的。

5. 锁绑定多个条件

一个 ReentrantLock 可以同时绑定多个 Condition 对象。

使用选择

除非需要使用 ReentrantLock 的高级功能,否则优先使用 synchronized。这是因为 synchronized 是 JVM 实现的一种锁机制,JVM 原生地支持它,而 ReentrantLock 不是所有的 JDK 版本都支持。并且使用 synchronized 不用担心没有释放锁而导致死锁问题,因为 JVM 会确保锁的释放。

线程之间的协作

当多个线程可以一起工作去解决某个问题时,如果某些部分必须在其它部分之前完成,那么就需要对线程进行协调。

join()

在线程中调用另一个线程的 join() 方法,会将当前线程挂起,而不是忙等待,直到目标线程结束。

对于以下代码,虽然 b 线程先启动,但是因为在 b 线程中调用了 a 线程的 join() 方法,b 线程会等待 a 线程结束才继续执行,因此最后能够保证 a 线程的输出先于 b 线程的输出。

    public class JoinExample {

        private class A extends Thread {
            @Override
            public void run() {
                System.out.println("A");
            }
        }

        private class B extends Thread {

            private A a;

            B(A a) {
                this.a = a;
            }

            @Override
            public void run() {
                try {
                    a.join();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("B");
            }
        }

        public void test() {
            A a = new A();
            B b = new B(a);
            b.start();
            a.start();
        }
    }

    public static void main(String[] args) {
        JoinExample example = new JoinExample();
        example.test();
    }

    A
    B

wait() notify() notifyAll()

调用 wait() 使得线程等待某个条件满足,线程在等待时会被挂起,当其他线程的运行使得这个条件满足时,其它线程会调用 notify() 或者 notifyAll() 来唤醒挂起的线程。

它们都属于 Object 的一部分,而不属于 Thread。

只能用在同步方法或者同步控制块中使用,否则会在运行时抛出 IllegalMonitorStateExeception。

使用 wait() 挂起期间,线程会释放锁。这是因为,如果没有释放锁,那么其它线程就无法进入对象的同步方法或者同步控制块中,那么就无法执行 notify() 或者 notifyAll() 来唤醒挂起的线程,造成死锁。

    public class WaitNotifyExample {
        public synchronized void before() {
            System.out.println("before");
            notifyAll();
        }

        public synchronized void after() {
            try {
                wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("after");
        }
    }

    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        WaitNotifyExample example = new WaitNotifyExample();
        executorService.execute(() -> example.after());
        executorService.execute(() -> example.before());
    }

    before
    after

wait() 和 sleep() 的区别

  • wait() 是 Object 的方法,而 sleep() 是 Thread 的静态方法;
  • wait() 会释放锁,sleep() 不会。

await() signal() signalAll()

java.util.concurrent 类库中提供了 Condition 类来实现线程之间的协调,可以在 Condition 上调用 await() 方法使线程等待,其它线程调用 signal() 或 signalAll() 方法唤醒等待的线程。相比于 wait() 这种等待方式,await() 可以指定等待的条件,因此更加灵活。

使用 Lock 来获取一个 Condition 对象。

    public class AwaitSignalExample {
        private Lock lock = new ReentrantLock();
        private Condition condition = lock.newCondition();

        public void before() {
            lock.lock();
            try {
                System.out.println("before");
                condition.signalAll();
            } finally {
                lock.unlock();
            }
        }

        public void after() {
            lock.lock();
            try {
                condition.await();
                System.out.println("after");
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        }
    }

    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        AwaitSignalExample example = new AwaitSignalExample();
        executorService.execute(() -> example.after());
        executorService.execute(() -> example.before());
    }

    before
    after

上次编辑于:
贡献者: javatodo