♥ElasticSearch知识体系详解♥
♥ElasticSearch知识体系详解♥
本系列主要对ElasticSearch知识体系进行详解。@pdai
知识体系
相关文章
首先,我们通过学习ElasticSearch的概念基础,了解Elastic Stack生态和场景方案。
在学习ElasticSearch之前,先简单了解下ES流行度,使用背景,以及相关概念等
在了解ElaticSearch之后,我们还要了解Elastic背后的生态即我们常说的ELK;与此同时,还会给你展示ElasticSearch的案例场景,让你在学习ES前对它有个全局的印象。
然后,搭建ElasticSearch和Kibana,进而从查询和聚合的角度入门学习。
了解完ElasticSearch基础和Elastic Stack生态后,我们便可以开始学习使用ElastiSearch了。所以本文主要介绍ElasticSearch和Kibana的安装。
安装完ElasticSearch 和 Kibana后,为了快速上手,我们通过官网GitHub提供的一个数据进行入门学习,主要包括查询数据和聚合数据。
入门后,需要从两大方面深入ElasticSearch常用功能:第一方面是索引管理;第二方面是查询和聚合。
了解基本使用后,我们从索引操作的角度看看如何对索引进行管理。
前文介绍了索引的一些操作,特别是手动创建索引,但是批量和脚本化必然需要提供一种模板方式快速构建和管理索引,这就是本文要介绍的索引模板(Index Template),它是一种告诉Elasticsearch在创建索引时如何配置索引的方法。为了更好的复用性,在7.8中还引入了组件模板。
在查询中会有多种条件组合的查询,在ElasticSearch中叫复合查询。它提供了5种复合查询方式:bool query(布尔查询)、boosting query(提高查询)、constant_score(固定分数查询)、dis_max(最佳匹配查询)、function_score(函数查询)。
DSL查询极为常用的是对文本进行搜索,我们叫全文搜索,本文主要对全文搜索进行详解。
DSL查询另一种极为常用的是对词项进行搜索,官方文档中叫”term level“查询,本文主要对term level搜索进行详解。
除了查询之外,最常用的聚合了,ElasticSearch提供了三种聚合方式: 桶聚合(Bucket Aggregation),指标聚合(Metric Aggregation) 和 管道聚合(Pipline Aggregation),本文主要介绍桶聚合(Bucket Aggregation)。
前文主要讲了 ElasticSearch提供的三种聚合方式之桶聚合(Bucket Aggregation),本文主要讲讲指标聚合(Metric Aggregation)。
前文主要讲了 ElasticSearch提供的三种聚合方式之指标聚合(Metric Aggregation),本文主要讲讲管道聚合(Pipeline Aggregation)。
进一步进阶,了解并深入ElasticSearch底层的原理等。
在学习ElasticSearch原理时,我推荐你先通过官方博客中的一篇图解文章(虽然是基于2.x版本)来构筑对ES的初步认知(这种认识是体系上的快速认知)。
通过上文图解了解了ES整体的原理后,我们便可以基于此知识体系下梳理下ES的整体结构以及相关的知识点, 这将帮助你更好的ElasticSearch索引文档和搜索文档的原理。
ElasticSearch中最重要原理是文档的索引和文档的读取,本文带你理解ES文档的索引过程。
ElasticSearch中最重要原理是文档的索引和文档的读取,前文介绍了索引文档流程,本文带你理解ES文档的读取过程。
最后,学习ElasticSearch实践,大厂经验,运维,资料等。
Elasticsearch 作为一个开箱即用的产品,在生产环境上线之后,我们其实不一定能确保其的性能和稳定性。如何根据实际情况提高服务的性能,其实有很多技巧。这章我们分享从实战经验中总结出来的 elasticsearch 性能优化,主要从硬件配置优化、索引优化设置、查询方面优化、数据结构优化、集群架构优化等方面讲解。
再分享一篇哈啰单车技术团队对ElasticSearch的查询性能优化的分析文章。
腾讯在ES优化上非常具备参考价值,本文来源于腾讯相关团队的技术分享。Elasticsearch 在腾讯内部广泛应用于日志实时分析、结构化数据分析、全文检索等场景,目前单集群规模达到千级节点、万亿级吞吐,同时腾讯联合 Elastic 公司在腾讯云上提供了内核增强版 ES 云服务。海量规模、丰富的应用场景推动着腾讯对原生 ES 进行持续的高可用、高性能、低成本等全方位优化。本次分享主要剖析腾讯对 Elasticsearch 海量规模下的内核优化与实践,希望能和广大 ES 爱好者共同探讨推动 ES 技术的发展。
本文来自 GitHub Awesome Elasticsearch 项目 在新窗口打开 , 搜集ElasticSearch相关的优秀资料。